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Abstract: Truck axle configurations and weights have changed significantly since the AASHO road study was conducted in the late
1950s and early 1960s. Emerging concerns about the effects of new axle configurations on pavement damage, which is unaccounted for
in the AASHTO procedure, have prompted several researchers to investigate the impacts of different axle and truck configurations on
pavement performance. However, there is still a need to strengthen the mechanistic findings using field data. In this paper, actual
in-service traffic and pavement performance data for flexible pavements in the state of Michigan are considered. Monitored truck traffic
data for different truck configurations are used to identify their relative damaging effects on flexible pavements in terms of cracking,
rutting, and roughness. The analysis included simple, multiple, and stepwise regression. The results indicated that trucks with multiple
axles (tridem or more) appear to produce more rutting damage than those with only single and tandem axles. On the other hand, trucks
with single and tandem axles tend to cause more cracking. Pavement roughness results did not show enough evidence to draw a firm

conclusion.
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Background

Factors such as traffic, environment, materials, and design con-
siderations affect pavement damage over time, with traffic loads
playing a key role in deterioration. Trucks are the major consum-
ers of the pavement network, applying the heaviest loads to the
pavement. Truck loads are transferred to the pavements through
various combinations of axle configurations depending on the
truck type. The AASHTO pavement design guide has been used
to convert different axle load configurations to a standard axle
load (18 kips) using load equivalency factors (LEFs). These LEFs
are based on loss of present serviceability index (PSI) and were
developed for a limited number of pavement types, load magni-
tudes, load applications, ages, and environments. The PSI is based
on the functional performance of the road surface (serviceability),
but only marginally accounts for other key performance measures
such as fatigue cracking and rutting for flexible pavements. In-
creased demand due to economic growth has led to changes in
truck dimensions and weights, and a need to examine damage
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caused by new axle and truck configurations using field data from
in-service pavements. In addition, investigating the relationship
between truck traffic and pavement performance from in-service
pavements can be used to verify previous mechanistic and labo-
ratory findings.

Mechanistic Analysis

Hajek and Agarwal (1990) highlighted the factors to be consid-
ered in calculating the load equivalency factors for various axle
configurations and developed those factors using strain criteria. It
was concluded that pavement response parameters such as deflec-
tions and strains have considerable influence on LEFs, and that
axle weight and spacing significantly contribute to pavement
damage. Chatti and Lee (2003) studied the effects of various truck
and axle configurations on flexible pavement fatigue using differ-
ent summation methods to calculate damage. Gillespie et al.
(1993) analyzed the effect of various axle and truck configura-
tions on pavement damage using different performance measures
(fatigue, rutting, and roughness). One of the conclusions of the
study by Gillespie and co-workers was that pavement rutting is
influenced by the total vehicle gross weight (i.e., the heavier the
vehicle, the more pavement rutting impact). All these studies were
based on mechanistic (static or dynamic) analyses.

Laboratory Investigations

Chatti and El Mohtar (2004) and El Mohtar (2003) studied the
fatigue life of an asphalt mixture in the laboratory under different
truck axle configurations using the indirect tensile cyclic load test
by applying load pulses that are equivalent to the passage of an
entire axle group or truck. The dissipated energy-based analysis
determined the number of repetitions to failure for each case, and
a unique fatigue curve for multi-axle configurations was devel-
oped. Their laboratory results showed that multiple-axle groups
were less damaging in fatigue per tonnage as compared to single
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axles. Increasing the number of axles carrying the same load re-
sulted in less damage. This decrease in damage was found to be
more significant between single, tandem, and tridem axles,
whereas it starts to level off at higher axle numbers. Similar re-
sults were obtained for trucks with larger axle groups, which had
lower truck factors per tonnage than those with single and tandem
axles. A similar laboratory study focused on rutting of asphalt mix
under various axle and truck configurations concluded that rutting
is proportional to the axle/vehicle weight (Salama 2005).

Analysis of In-Service Pavements

Chatti et al. (2004) used field data from a general pavement study
in a long term pavement performance program to investigate the
relative damage (fatigue and rutting) to asphalt pavements by
various axle and truck configurations. There were no conclusive
results from the analysis about the effect of axle/truck configura-
tions on fatigue and rutting damage.

In examining their special overload permits, the Ohio Depart-
ment of Transportation recognized that trucks traveling from
Michigan to northern Ohio cities were substantially heavier than
those in Ohio (Ilves and Majidzadeh 1991; Saraf et al. 1995).
Therefore, a field study was conducted to investigate the effect of
Michigan heavy vehicles on pavement performance. The follow-
ing field data were collected for this study: Traffic, rutting,
faulting, cracking, roughness, and deflection measurements. Re-
gression analysis of rutting data produced the following equation:

RUTF = 0.035 + 0.984(C3) + 0.03(B + C) + 0.0007 (months)
(1)

where RUTF=rutting (in inches) in flexible pavement;
Cz=number of FHwA Class 13 vehicles in the lane per day in
thousands; B=total number of trucks in FHwA Classes 8—12 in
thousands; C=total number of trucks in FHwA Classes 4—7 in
thousands; and months is the number of months of testing with
January 1986 as month=1.

They concluded that heavy axle loads influenced rutting for
flexible and composite pavements; however, the field traffic and
performance data used in this study were from only four roads
linking Ohio and Michigan. In addition, the analysis did not com-
pare the relative damage resulting from various axle/truck con-
figurations on pavement cracking and roughness.

In the present study, actual field data from the state of Michi-
gan were analyzed to study the effects of various axle and truck
configurations on critical pavement distresses. The Michigan De-
partment of Transportation (MDOT) has very comprehensive
pavement surface distress data files. MDOT also collects rutting
and roughness data, as well as traffic count and weight data
throughout its network. Collection of traffic and weight data has
been recently upgraded by using new weigh in motion technol-
ogy. This allows for a more accurate representation of the distri-
bution of truck axle weights and configurations along MDOT’s
trunklines. The details of the truck traffic and pavement perfor-
mance data, as well as the analyses conducted, are explained in
the following sections.

Research Obijective

The objective of this research is to investigate the effect of dif-
ferent axle/truck configurations on flexible pavement damage in
terms of cracking, as measured by the distress index (DI), rutting,

and roughness, as measured by ride quality index (RQI) using
weigh station truck traffic and in-service pavement performance
data.

Performance Data

Great effort has gone into selecting sections with the same pave-
ment type, age, cross-sectional design, and traffic loading. The
same control section was divided into several sections that have
similar average daily truck traffic (ADTT) so that if pavement age
varies, the cumulative control section traffic will reflect each sub-
section’s age. MDOT surveys the pavement distress for half of
their network every year. The survey includes three main perfor-
mance measures: (1) DI, (2) rutting, and (3) RQIL The distress
survey includes only outside (slow) lane where most trucks travel.

Distress Index

MDOT uses the DI as one measure of pavement performance
within its pavement management system. Through observation
and assessment of pavement surface conditions, DI is determined
as a measure of distresses (primarily load related) and is currently
used to determine the need for preventive maintenance and
rehabilitation/reconstruction. Although it is a visually determined
quantity (e.g., severity and extent of cracks), DI is based on spe-
cific metrics. The DI scale starts at zero for a new pavement and
increases (without limit) as the pavement condition worsens.
MDOT categorizes DI into three levels: Low (DI<20), medium
(20<DI<40), and high (DI>40). A pavement with a DI of 50 is
considered to be exhausted and is a candidate for major rehabili-
tation or reconstruction. DI is a cumulative value, which includes
all surface distresses since the original construction of the pave-
ment, but can be affected (reduced) by preventive maintenance or
major rehabilitation.

Rutting

Rutting is a main load-related distress in flexible pavements. It is
the permanent deformation in the transverse profile in the wheel
path, starting at O rut depth and increasing with the number of
heavy load repetitions. MDOT considers a rutting threshold of
0.5 in. (12 mm) to be the boundary between good and poor pave-
ment conditions. Rutting is cumulative over time unless major
rehabilitation is applied to the pavement.

Ride Quality Index

As its name suggests, the RQI describes the ride quality of the
road. The RQI was developed by MDOT in the early 1970s, as a
weighted wavelength based index that is correlated with subjec-
tive opinions of highway users. A RQI value between 0 and 30
indicates excellent ride quality, 31-54 good ride quality, 55-70
fair ride quality, and pavements with more than 70 are considered
to have poor ride quality (Darlington 1995).

Pavement Prior Condition

Some of the pavement control sections in the study recently re-
ceived major rehabilitation or preventive maintenance that altered
the pavement surface distresses to zero even though these pave-
ments were not reconstructed. The prior condition of the pave-
ment can affect the future growth rate of the distresses such that
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Table 1. Effect of Prior Condition on Distress Index

(a) ANOVA
Sum of
squares df Mean square F p-value
Regression 69.270 2 34.635 14.351 0.00001*
Residual 137.564 57 2413
Total 206.834 59
(b) Regression coefficient and p-value
Unstandardized Standardized
coefficients coefficients
Independent _
variables B Std. Error B p-value
Constant 0.622 0.408 0.13308
PC 0.003 0.008 0.047 0.70390
Age 0.141 0.029 0.600 0.00001

Predictors: (Constant), age, PC.

these pavements may behave differently compared to newly con-
structed pavements. All available prior DI data were taken into
account to investigate the effect of the prior condition on pave-
ment deterioration. This was done using a weighted (with respect
to pavement age) average of DI values, which is calculated as
follows:

> DI X Age
> Age

The DI takes into account the variability of DI over time due to
distress survey errors and unrecorded routine maintenance. The
prior condition was treated as a covariate in the multiple linear
regression analysis. Table 1 shows the regression coefficients and
p-values from the ANOVA analysis. The results show that the
prior condition is not statistically significant for the DI when age
is taken into account. Therefore, having the latest distress survey
and the corresponding pavement’s age for calculating the cumu-
lative traffic is sufficient for determining the relative effect of
axles/trucks on pavement damage.

DI= ()

Traffic Data

The Federal Highway Administration (FHwA website: http://
apps.fhwa.dot.gov/vtris/vtris.aspx) assembles highway traffic in-
formation all over the United States and provides it in its Vehicle
Travel Information System (VTRIS), which is available as a pub-
lic domain software. The FHwWA classifies truck traffic into nine
categories according to number of axles and number/type of truck
units. Most of the truck categories include different truck configu-
rations. The program provides the count of each FHwA truck
class without differentiating between different configurations or
providing the proportion of each configuration under a given cat-
egory. Not all needed traffic counts/proportions and the average
weights of each truck configuration are available in the VTRIS
program. It was therefore necessary to analyze raw traffic data
provided by MDOT in order to extract all essential truck
information.

Vehicle Travel Information System, VTRIS

The FHwA traffic data are classified into 13 classes. Classes 5—13
are for truck traffic, reported as the ADTT count per class type.

Table 2 shows the class definition, the axle groups (number of
axles within an axle group), and examples of truck configurations
for Classes 5-13. Axle spectra are also available from FHwA data
but only for single, tandem, tridem, and quad axles. The program
does not have the count for large (=5) axle groups, which are the
point of interest in this research. Using the FHwA data (from
“W-2” tables at the website), the ADTT for Classes 5-13 were
extracted for the control sections corresponding to the outside
lane. The improvement year of the control section was also ob-
tained from MDQOT’s sufficiency-rating books. The improvement
year represents the most recent year the segment received signifi-
cant work that improved the pavement condition or extended the
life of the pavement. The cumulative truck traffic, (CTT) for
Classes 5—13 was calculated as follows:

CTT of class = ADTT of class X pavement age X 365 (3)

where ADTT=average daily truck traffic of a given class and
pavement age=year of improvement—distress survey year.

The consistency of weigh station traffic data from year to year
was examined for total ADTT and individual truck classes. Fig. 1
shows a comparison of ADTT in 2001 and 2002 traffic data for all
weigh stations in the state of Michigan. No significant change can
be seen in the traffic data. Therefore, the 2001 traffic data were
used for truck classes’ analysis.

Raw Traffic Data

As VTRIS does not provide some essential data needed for this
research, raw truck traffic data for 2000 were analyzed to deter-
mine the distribution of axle and truck configurations for all axle
groups including those with a large number of axles for each
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Fig. 1. One-to-one comparison between 2001 and 2002 total average
daily truck traffic
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Table 2. FHwA Vehicle Class Definition, Axle Groups, and Example of Truck Configurations

C]l; i‘gi:pe Class Definition &Lep Example truck configurations
5 e | L
;T s i
7 nglewnitimeks _and4 P Foowor
f i Poo Poo
T S T
10 Sixormoreaxle  1,2,7 ﬁ-—prp' .
single-trailer trucks  and 8 g
1 Five or ff:wer axle 1
multi-trailer trucks
N -V —
13 Sevep or more axle ];2’53’
multi-trailer trucks Tand 8

weigh station. Trucks were categorized according to their largest
axle group. For example, a quad axle is an axle group that has
four axles that share the same weight, so that trucks with a quad-
axle are all trucks that have quad axle as the largest axle group.
Table 3 shows the axle and truck categories used in the analysis.
The analysis of raw traffic data also allowed for determining the
proportions of each truck type within each FHwA Truck Class.
Table 4 shows the proportions, average truck weight, and the
percentage of truck configurations within each class. FHwA Truck
Class 13, which is the heaviest truck class, includes many differ-
ent configurations with most having very small numbers. The
table shows that Truck Classes 7—12 have very small percentages
(<0.4%) and Truck Class 5 has the lowest overall average
weight (6.0 t). These trucks will not significantly contribute in
explaining the pavement damage; therefore they were excluded
from the analysis.

Table 3. Axle/Truck Configurations Extracted from Raw Data

Analysis

The analysis was conducted using three different independent
variables: (1) axle configuration (29 subsections); (2) truck
configuration (29 subsections); and (3) FHwA truck class (53 sub-
sections). The effects of these on DI, rutting, and RQI were in-
vestigated using simple, multiple, and stepwise linear regression.

Regression Analysis

A series of simple univariate linear regressions was used to inves-
tigate the effect of each axle/truck configuration on each different
pavement distress type. The simple linear regression provides the
value of the slope and the correlation coefficient of the relation-
ship between the independent variables (axle/truck configura-
tions) and dependent variables (DI, rutting, and RQI). Univariate

Axle/truck Example truck configurations Axle configurations
Single _ﬂ_ |

Tendee oo oo

Tridem B ovvos-so w50

Quad B o0 5000 5000

Five ﬂ_hw

BiX F oo oo0000

Seven

B ossoosens

Eight ﬂ%—m
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Table 4. Proportions and Average Weights for FHwWA Truck Classes

Weighted Percentage
FHwA Truck Truck Total Proportions Average truck average truck of each truck
class configuration count count (%) weight (t) weight (t) class
5 5F1* 892,451 905,700 98.5 6.0 6.0 40.7
SF12 10,635 1.2 7.0
SF11 1,405 0.2 6.8
SF111 1,209 0.1 7.7
6 6F2 91,657 91,657 100.0 133 13.3 4.1
7 7F3 6,096 6,975 87.4 19.8 20.5 0.3
7F21 879 12.6 25.6
8 8F11 149,141 229,718 64.9 30.7 253 10.3
8F12 65,798 28.6 153
8F21 7,880 34 16.1
8F111 6,899 3.0 14.6
9 9F22 631,743 738,310 85.6 214 21.6 332
9F211 106,567 14.4 23.0
10 10F23 35,972 51,930 69.3 244 27.8 23
10F2111 10,657 20.5 37.1
10F212° 5,234 10.1 32.6
10F221 67 0.1 29.2
11 11F1111 37,790 37,790 100.0 21.8 21.8 1.7
12 12F2111 1,323 1,323 100.0 31.2 31.2 0.1
13 Trucks with 8-axle® 6,987 158,305 4.4 58.3 57.42 7.2
Trucks with 7-axle 5,753 3.6 68.7
Trucks with 6-axle 4,284 2.7 66.5
Trucks with 5-axle 31,383 19.7 61.7
Trucks with 4-axle 52,190 32.8 58.5
Trucks with 3-axle 33,914 21.3 51.1
Trucks with 2-axle 23,794 14.9 53.8

“FHwA Class 5 front and single axle.
"FHwA Class 10 front, tandem, single, and tandem.
“Trucks with 8-axle group as the largest group.

analysis can only partially explain the distresses on pavement as it
does not account for other variables. It was primarily used to gain
insight into the data.

Multiple linear regression takes into account all specified vari-
ables at the same time. The multiple linear equations produced
herein are not intended to be a universal model to predict
pavement damage. The regression parameter (B), coefficient of
determination (R?), and test statistic (p-values) were utilized to
compare the effect of different axle and truck configurations on
pavement damage. Throughout the multiple linear regression
analysis, checking the normality assumption and constant vari-
ance of the residual, as well as deleting the influential points
based on Cook’s distance, were considered.

Stepwise regression was also used to confirm the results from
simple and multiple linear regressions. Stepwise regression is a
technique for choosing the variables to include in a multivariate
regression model. Forward stepwise regression starts with no
model terms. At each step, it adds the most statistically significant
term (the one with the highest F statistic or lowest p-value) until
the addition of the next variable makes no significant difference.
An important assumption behind the method is that some input
variables in a multiple regression do not have an important ex-
planatory effect on the response. Stepwise regression keeps only
the statistically significant terms in the model.

Standardized Regression Coefficients

The value of the slopes (B’s) in simple, multiple, and stepwise
linear regression depends on the unit of measurement (number of
truck repetitions). This slope represents the change in distress
(dependent variable) due to a unit increase in the number of axle
or truck repetitions (independent variables). Axle/truck configura-
tions with fewer repetitions will have a larger slope value,
whereas those axle/truck configurations with more repetitions will
have a very small slope value, which does not represent the actual
effect regardless of the number of repetitions. Moreover, the in-
tercept for each independent variable will be different from each
other, which may not help in comparing the relative effects. The
standardized slope has been documented as a measure to compare
the relative importance of different independent variables (Dillon
and Goldstein 1984; Allen 2001). Standardized slope values are
determined by converting all variables (dependent and indepen-
dent) into Z scores. Having the variables in Z-score form will
convert the distribution mean to zero and standard deviation to
one, such that all variables will have a common measurement
scale and one can determine which independent variable is rela-
tively more important. The following equation represents the non-
standardized simple linear regression:

JOURNAL OF TRANSPORTATION ENGINEERING © ASCE / OCTOBER 2006 / 767



Table 5. Component Matrix

Component

Class 1 2

6 0.886 0.350
7 0.528 0.806
8 0.897 0.284
9 0.953 -0.211
10 0.870 -0.293
11 0.694 —-0.503
13 0.721 —-0.257

Y=a+BX 4)

where Y=dependent variable (DI, rutting, or RQI); o =intercept;
B=nonstandardized slope; and X=independent variable (e.g.,
single-tandem or multiple axle repetitions).

The following equations represent the standardized simple lin-
ear regression:

. X-X
X =Z-= (6)
()-X
Y-Y
Y'=27,= (7
N g

where Y*=standardized dependent variable; B*Zstandardized
slope; Y=average value of dependent variable; X" =standardized

independent variable; and X=average value of independent
variable.

The same procedures were used to standardize the regression
coefficient parameters in multiple and stepwise regression. The
standardized slope was used to compare the relative effect of the
axle/truck configurations in all regression analyses presented in
the following sections.

Multicollinearity

In multiple linear regression analysis, having several independent
correlated variables in the model will affect the values of the
regression coefficients and in some cases cause the signs to
switch to counterintuitive values. There are several outcomes that
result from multicollinearity in the data (Neter and Wasserman
1996):

1. Disagreement between the F-test in the overall ANOVA

table and the marginal 7-tests;

Table 6. Effect of Different Truck/Axle Configurations of Pavement DI

Standardized parameters

——Class5 —o—Class6 ——Class7 —x-Class8 —x—Class9
—o—Class 10 ——Class 11 ——Class 12 ——Class 13

Fig. 2. Ridge traces for different truck classes

2. Inaccurate estimation of the regression parameters (B’s),
where some of the [ values are negative in multiple linear
regression whereas they are positive in simple linear
regression;

3. Large standard errors for the regression parameters;

4. A large variance inflation factor (VIF), which measures
how much the variance of a coefficient is increased be-
cause of multicollinearity. A VIF= 10 indicates a serious
multicollinearity problem;

5. Correlation matrix of the independent variables—an ex-
amination of the correlation matrix showed that the weigh
station traffic data for different truck types were highly
correlated with each other (p>0.7).

Remedies for the Multicollinearity Problem

There are several methods suggested in the literature (Belsley et
al. 1980) to remedy the multicollinearity problem. Some of these
methods are outlined here:

1. Remove one or several predictor variables from the model
in order to reduce the multicollinearity and standard error
of the regression parameters.

2. Principle component analysis can be used to form one or
several composite indices based on the highly correlated
predictor variables. The principle components method
provides combined indices that are uncorrelated.

3. Ridge regression is one of the remedies for such a prob-
lem. Ridge regression introduces bias to the diagonal of
X'X (where X=n X k matrix of independent variables, and
X' is the inverse of the X matrix) for calculating the re-
gression coefficients, shrinks the coefficient values toward
zero, and decreases the standard error of the coefficients.

4. Based on judgment, combine similar truck configurations.

The results from multiple linear regression analysis showed

Simple linear regression

Multiple linear regression Stepwise regression

Axle/truck Independent

configurations variables B p-value R? B p-value R? B p-value R?

Axle types 1 and 2 0.430 0.02 0.185 0.617 0.032 0.343 0.585 0.001 0.342
3,4,5,6,7,and 8 0.265 0.164 0.070 —-0.040 0.883 N/S NA

Truck types 1 and 2 0.466 0.011 0.218 0.580 0.007 0.437 0.654 0.003 0.427
3,4,5,6,7,and 8 0.272 0.154 0.074 0.122 0.540 N/S NA

Truck classes 6, 8,9, 10, and 11 0.272 0.048 0.074 0.340 0.090 0.092 0.301 0.028 0.091

13 0.095 0.497 0.009 —-0.053 0.790 N/S NA

Note: N/S=not selected by model and NA=not applicable.
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Table 7. Effect of Different Truck/Axle Configurations on Pavement Rutting

Simple linear regression Multiple linear regression Stepwise regression

Axle/truck Independent

configurations variables B p-value R? B p-value R? B p-value R?

Axle types 1 and 2 0.399 0.032 0.159 0.059 0.773 0.58 N/S NA 0.578
3,4,5,6,7,and 8 0.441 0.017 0.194 0.715 0.002 0.790 0.0000

Truck types 1 and 2 0.283 0.137 0.079 -0.009 0.957 0.584 N/S NA 0.584
3,4,5,6,7,and 8 0.440 0.017 0.193 0.769 0.0006 0.695 0.0000

Truck classes 6, 8,9, 10, and 11 0.395 0.004 0.156 0.073 0.6316 0.412 N/S NA 0.409

13 0.537 0.0004 0.288 0.590 0.0003 0.639 0.0000

Note: N/S=not selected by model; NA=not applicable.

that Truck Class 9 has a very high VIF (119), with Classes 8, 11,
and 13 also having large values (>10). Removing Class 9 from
the model in order to reduce the multicollinearity and standard
error of the regression parameters leads to a VIF of 12.58 for
Class 13. This means that the first remedy calls for removing
truck Classes 9 and 13 from the analysis. This is not acceptable as
Truck Class 13 includes the heaviest trucks and Truck Class 9
represents 33% of the total truck population. Therefore, this
method was not selected.

The results from principle component analysis indicate that
more than 83% of the variance can be explained by the first two
components. However, each component is composed of all truck
classes (see Table 5). Therefore, this method was not selected
since it lumps totally dissimilar truck configurations together,
which is not desirable for meeting the objective of this research.

The analysis using ridge regression showed that the appropri-
ate theta value as determined from ridge trace graph (see Fig. 2) is
0.1. At this value, the majority of coefficient estimators (B’s) are
positive except for Classes 6, 10, and 12. To make these [3 coef-
ficients positive, a much higher value of theta is required.
However, a much higher value will introduce significant bias, and
therefore, is not acceptable.

Based on the previous analyses, none of the remedies for the
multicollinearity problem meet the objective of this research;
therefore, the analysis was done using the last method (combining
similar truck configurations). Single and tandem axles/trucks
were lumped together as one group and multiple axles/trucks (tri-
dem, quad, 5-axle, 6-axle, 7-axle, and 8-axle) were lumped to-
gether as another group.

Results and Discussion
As mentioned earlier, the most logical way to compare the effect

of different correlated axle/truck configurations and truck classes
was to group similar configurations together. Therefore, axles/

Table 8. Effect of Different Truck/Axle Configurations on Pavement RQI

trucks were categorized into two groups: single-tandem and mul-
tiple axles/trucks. FHWA truck classes have nine different truck
types (Classes 5-13). Classes 7 and 12 were excluded based on
their low percentage and Class 5 was excluded due to the insig-
nificant effect caused by its light weight. Trucks with single and
tandem axles can be found in Classes 6, 8, 9, 10, and 11, whereas
trucks with multiple axles are only in Class 13. A given weigh
station can be the source of traffic data for several subsections
based on their age; whereas the level of traffic is the same for
these subsections, their different ages will make their cumulative
traffic different.

The results from the analyses are summarized in Tables 6—8
for DI, rutting and RQI, respectively. Table 6 shows the standard-
ized regression coefficients (B values), p-values, and R> for DL
The B values for single-tandem axles/trucks from all three regres-
sion methods are higher than those of multiple axles/trucks. More
importantly, the p-values for multiple axles/trucks show that they
are not significant (p>0.05), suggesting that multiple axles cause
less cracking damage per load carried. This conclusion agrees
with the laboratory investigations conducted recently (Chatti and
El Mohtar 2004; E1 Mohtar 2003).

In Table 7, models and statistics for rutting are reported. The
results show that multiple axles/trucks are significant and show
higher 3 values than single-tandem axles/trucks, which are not
significant. This indicates that rutting is more influenced by
heavier loads (axle/truck gross weight), which agrees with the
results from other studies (Gillespie et al. 1993; Salama 2005).

It should be noted that the R? values for simple linear regres-
sion analyses are low; however this is expected since the indi-
vidual axle/truck groups will not solely explain the distresses. A
significant improvement of R? values occurs when using multiple
linear regression except for the analysis of FHwA truck classes.
This refers to the fact that Truck Class 13 has some single and
tandem axle trucks. More importantly, the main goal of using
these regression models is to have a relative comparison; they are
not suggested for any future prediction.

Simple linear regression

Multiple linear regression Stepwise regression

Axle/truck Independent

configurations variables B p-value R? B p-value R? B p-value R?

Axle types 1 and 2 0.129 0.502 0.017 1.019 0.0006 0.424 N/S NA NA
3,4,5,6,7,and 8 -0.264 0.166 0.069 -1.092 0.0003 N/S NA

Truck types 1 and 2 0.318 0.093 0.101 0.796 0.00020 0.473 N/S NA NA
3,4,5,6,7,and 8 —-0.268 0.159 0.072 -0.751 0.00037 N/S NA

Truck classes 6, 8,9, 10, and 11 -0.111 0.435 0.012 0.608 0.00356 0.314 0.608 0.00356 0.314

13 —-0.423 0.002 0.179 -0.909 0.00003 —-0.909 0.00003

Note: N/S=not selected by model; NA=not applicable.
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The statistical results for RQI are found in Table 8. Single-
tandem axles/trucks show higher B values than multiple axle/
trucks. However, even though p-values for both axle/truck con-
figurations are significant (p <0.05), B values for multiple axles
are negative. This can be interpreted to mean that pavement sec-
tions with higher proportion of multiple axles/trucks configura-
tions tend to have lower RQI values (lower roughness), while
those with higher proportion of single and tandem axle/truck con-
figurations tend to have higher RQI values (higher roughness). To
date, no known analytical or laboratory-based investigations have
been conducted to look at the effect of different axle/truck con-
figurations on pavement roughness, therefore the results reported
herein could not be independently verified. Therefore, for the RQI
results, there was not enough evidence to draw a firm conclusion.

Conclusion

Based on the analyses of performance data from in-service pave-
ments in the state of Michigan, the effect of heavy multiple axle
trucks on flexible pavement damage can be summarized as
follows:

1. Trucks with single and tandem axles appear to affect
pavement cracking (DI) more than those with multiple
axles (tridem and higher).

2. Conversely, heavier trucks with multiple axles tend to
have more effect on rutting than those with single and
tandem axles.

3. There was not enough evidence to draw a firm conclusion
on whether trucks with different axle configurations af-
fected pavement roughness differently.

These findings are more valuable for truck weight and size
policy purposes than pavement design protocols, since trucks with
multiple axles represent a small percentage of the total truck traf-
fic compared to trucks with single and tandem axles only.

Acknowledgments

The writers would like to thank the Michigan Department of
Transportation (MDOT) for funding this research and providing
traffic and performance data. Special thanks are due to Professor
Dennis Gilliland for his input in the statistical analysis.

Disclaimer
The writers assume no liability for the contents of this paper and

use thereof. The contents of this paper reflect the views and opin-
ions of the writers who are responsible for the accuracy of the

information presented herein. The contents do not necessarily re-
flect the views of MDOT and do not constitute a department
standard, specification, or regulation.

References

Allen, J. C. (2001). “Species-habitat relationships for the breeding birds
of a longleaf pine ecosystem.” Master of Science in Ecology, Faculty
of the Virginia Polytechnic Institute and State Univ.

Belsley, D. A., Kuh, E., and Welsch, R. E. (1980). Regression diagnos-
tics: Identifying influential data and sources of collinearity, Wiley,
New York.

Chatti, K., and El Mohtar, C. (2004). “The effect of different axle con-
figurations on the fatigue life of an asphalt concrete mixture.” Trans-
portation Research Record. 1891, Transportation Research Board,
Washington, D.C., 121-130.

Chatti, K., Salama, H., and El Mohtar, C. (2004). “Effect of heavy trucks
with large axle groups on asphalt pavement damage.” Proc., 8th Int.
Symp. on Heavy Vehicle Weights and Dimensions, Gauteng province,
South Africa.

Chatti, K., and Lee, H. S. (2003). “Comparison of mechanistic fatigue
prediction methods for asphalt pavements.” Proc., Int. Conf. on Com-
putational and Experimental Engineering and Sciences, Corfu,
Greece.

Darlington, J. (1995). “The Michigan Ride Quality Index.” Michigan
Dept. of Transportation Document, Mich.

Dillon, W., and Goldstein, M. (1984). Multivariate analysis method and
applications, Wiley, New York.

El Mohtar, C. (2003). “The effect of different axle configurations on the
fatigue life of an asphalt concrete mixture.” M.S. thesis, Dept. Civil
and Environmental Engineering, Michigan State University, East Lan-
sing, Mich.

Gillespie, T. D., Karamihas, S. M., Sayers, M. W., and Cebon, D. (1993).
“Effects of heavy-vehicle characteristics on pavement response and
performance.” NCHRP Rep. No. 353, The University of Michigan,
Transportation Research Institute, Ann Arbor, Mich.

Hajek, J. J., and Agarwal, A. C. (1990). “Influence of axle group spacing
on pavement damage.” Transportation Research Record. 1286, Trans-
portation Research Board, Washington, D.C., 138-149.

Tlves, G. J., and Majidzadeh, K. (1991). “Reevaluation of the methods for
calculation of load equivalency and damage ratios.” Rep. No. FHWA/
OH-89/018.

Neter, J., and Wasserman, W. (1996). Applied linear statistical models,
Irwin, Chicago.

Salama, H. (2005). “Effect of heavy multi-axle trucks on flexible pave-
ment rutting.” Ph.D. Dissertation, Dept. of Civil and Environmental
Engineering, Michigan State Univ., East Lansing, Mich.

Saraf, C. L., Tlves, G., and Majidzadeh, K. (1995). “Effect of heavy
vehicle weight on pavement performance.” Road Transport
Technology-4, Proc., Fourth Int. Symp. Heavy Vehicle Weights and
Dimensions.

770 / JOURNAL OF TRANSPORTATION ENGINEERING © ASCE / OCTOBER 2006



Copyright of Journal of Transportation Engineering is the property of American Society of Civil
Engineers and its content may not be copied or emailed to multiple sites or posted to a listserv
without the copyright holder's express written permission. However, users may print, download, or
email articles for individual use.



